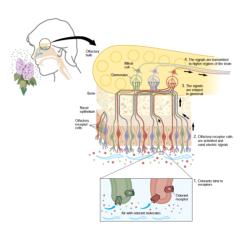


Contributions to Pattern Mining and Formal Concept Analysis

Habilitation de l'INSA Lyon et de l'Université Claude Bernard LYON I, Villeurbanne, 12 Feb. 2020

Mehdi Kaytoue


Dr. Karell Bertet	Maître de conférences (HDR), Université de la Rochelle
Dr. Florent Masseglia	Directeur de recherche, INRIA
Pr. Christel Vrain	Professeure, Université d'Orléans
Pr. Michael Berthold	Professeur, Konstanz Universität - CEO Knime AG
Pr. Angela Bonifati	Professeure, Université Claude Bernard Lyon 1
Pr. Jean-François Boulicaut	Professeur, INSA Lyon
Pr. Johannes Fürnkranz	Professeur, University of Linz
Dr. Amedeo Napoli	Directeur de recherche, CNRS
INSTITUT NATIONAL DES SCIENCES APPLIQUÉES LYON	

A scientific question

Understanding the olfactory system

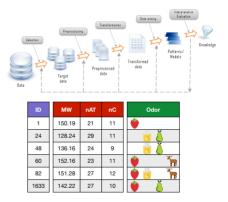
- Olfaction is the ability to perceive odors
- Complex phenomenon from molecule to perception¹
- Challenges
 - Established links between physico-chemical properties and olfactory qualities^{2, 3}
 - Difficulties to formulate/propose rules
- Impact
 - Fundamental neuroscience research
 - Industry (food, perfume)
 - Health (anosmia, ...)

¹ ⁽ⁱ⁾ "A novel multigene family may encode odorant receptors: A molecular basis for odor recognition". *Cell (Nobel Prize in Medicine 2004)* (1991).

³ A. Keller et al. "Predicting human olfactory perception from chemical features of molecules". *Science* (2017).

² U. J. Meierhenrich et al. "The Molecular Basis of Olfactory Chemoreception". Angewandte Chemie International Edition 43.47 (2004).

Eliciting hypotheses from data: A KDD task


Data collection

- Descriptions: Physico-chemical properties⁴, molecular structure (1D, 2D, 3D, smile), etc.
- Targets: odor(s), valence...⁵

Mining (a few and good) hypotheses (in a large search space)

• Clustering, biclusters, association rules, redescriptions,

• Mining subgroups discriminating a target attribute⁶ Data query: $s = nAT \ge 24 \land nC \le 11$ Query result: $support(s) = \{24, 48, 1633\}$ $Quality(s \rightarrow pear)$ is high: all the pears, only the pears

⁴ I. V. Tetko et al. "Virtual Computational Chemistry Laboratory - Design and Description". *Journal of Computer-Aided Molecular Design* 19.6 (2005).

- ⁵ S. Arctander. Perfume and flavor materials of natural origin. Vol. 2. 1994.
- ⁶ S. Wrobel. "An Algorithm for Multi-relational Discovery of Subgroups". *PKDD*. 1997.

Outline

• Data & Pattern Formalization

- Numerical Pattern Mining
- Biclustering
- Data Dependencies

• Pattern Mining and Subgroup Discovery

- Mining a small set of diverse patterns
- Iteratively mine finer data representations
- Knowledge Discovery in Practice
 - Neuroscience & Olfaction
 - Social Network Analysis
 - Video Game Analytics
- Perspectives

Our investigations

- What do we mine?
- How do we mine the best patterns?
- For what purpose?

Data & Pattern Formalization **Outline**

• Data & Pattern Formalization

- Numerical Pattern Mining
- Biclustering
- Data Dependencies
- Pattern Mining and Subgroup Discovery
 - Mining a small set of diverse patterns
 - Iteratively mine finer data representations

• Knowledge Discovery in Practice

- Neuroscience & Olfaction
- Social Network Analysis
- Video Game Analytics
- Perspectives

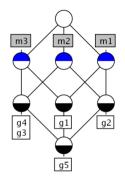
Data & Pattern Formalization A short introduction to Formal Concept Analysis⁷

From a binary table to a concept lattice

- Formal context (G, M, I): A binary relation I between *objects* G and attributes M
- Galois connection: a pair of closure operators (.)"

$$A' = \{ m \in M \mid \forall g \in A \subseteq G : (g, m) \in I \}$$

$$B' = \{g \in G \mid \forall m \in B \subseteq M : (g, m) \in I\}$$


- Concepts (A,B): Fixpoints, extent A = B' and intent B = A'
- Concept lattice: a poset,

$$(A_1, B_1) \le (A_2, B_2) \Leftrightarrow A_1 \subseteq A_2 \ (\Leftrightarrow B_2 \subseteq B_1)$$

• (Partial) implications bases

```
<sup>7</sup> B. Ganter et al. Formal Concept Analysis. 1999.
```

	1		
	m_1	m_2	m_3
g_1	×		×
g_2	×	×	
g_3		×	×
g_4		×	×
g_5	×	\times	×

 $\{g_3\}' = \{m_2, m_3\}$ $\{m_2, m_3\}' = \{g_3, g_4, g_5\}$ $(\{g_3, g_4, g_5\}, \{m_2, m_3\})$ $(\{g_1, g_5\}, \{m_1, m_3\}) \le (\{g_1, g_2, g_5\}, \{m_1\})$

Data & Pattern Formalization A short introduction to Formal Concept Analysis

Some key properties for data analysis

- A natural structure of the data
- Maximality of concepts as rectangles
- Overlapping of concepts
- Specialization/generalization hierarchy
- Synthetic representation of the data without loss of information
- Data implications
- Data navigation
- Knowledge base representation

but...

- FCA hardly deals with (large) numerical data
- FCA advances unknown in many fields where these properties are key indeed
 - The community of pattern mining rediscovered several notions from FCA and then got strongly dedicated into algorithms, but interestingly, not much interest in "pure" numerical patterns
 - Concepts are very similar to biclusters, yet new algorithms
 - Implications can be mapped to functional dependencies in the database field

First axis of research: formalize problems with FCA

Data & Pattern Formalization Interval Patterns

A little interest in "pure" Numerical Pattern Discovery

- Pre-processing to discretize the data⁸
- Greedy cut-points selection during the exploration⁹

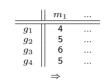
			m_1	m_2	m_3	m_4	m_5		
		g_1	1	2	2	1	6		
		g_2	2	1	1	5	6	\Rightarrow	
		g_3	2	2	1	7	6		
		g_4	8	9	2	6	7		
	$ m_1 \in [0;$	5] r	$n_1 \in]5;$	15]	$m_2 \ge 6$	m_{i}	$_{3} \ge 6$	$m_4 \ge 6$	$m_5 \ge 6$
g_1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5] r	$n_1 \in]5;$	15]	$m_2 \ge 6$	m_{i}	$_3 \ge 6$	$m_4 \ge 6$	$\frac{m_5 \ge 6}{\times}$
g_1 g_2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5] r	$n_1 \in]5;$	15]	$m_2 \ge 6$	<i>m</i>	$_{3} \ge 6$	$m_4 \ge 6$	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5] r	$n_1 \in]5;$	15]	$m_2 \ge 6$		$_{3} \ge 6$	$m_4 \ge 6$ ×	×

• Even with discretization, numerical patterns are simply *n*-intervals hidden in the same space traversed by decision trees using cut-points: "boxes/rectangles" with sides parallel to axes of Euclidean space

Can we formalize *n*-intervals or boxes in FCA?

⁸ X. Yang et al. "Discretization Methods". Data Mining and Knowledge Discovery Handbook, 2nd ed. 2010.

⁹ H. Grosskreutz et al. "On subgroup discovery in numerical domains". Data Min. Knowl. Discov. 19.2 (2009).


Data & Pattern Formalization Interordinal scaling¹³

Transform and mine

• A scale to encode intervals of attribute values

	$m_1 \leq 4$	$m_1 \leq 5$	$m_1 \leq 6$	$m_1 \ge 4$	$m_1 \ge 5$	$m_1 \ge 6$
4 5	×	××	××	××	×	
6			×	×	×	×

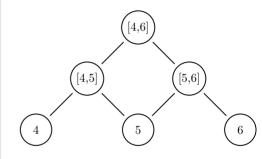
- Transformed data with scaling is inefficient to store, to work on and visualize
- A lot of redundancy (actually, implications of the scale can be used during extraction¹⁰)
- Closed concepts are meaningful, but there are some problems with minimal generators (detailed after)

	$m_1 \leq 4$	$m_1 \leq 5$	$m_1 \leq 6$	$m_1 \ge 4$	$m_1 \ge 5$	$m_1 \ge 6$	
$g_1 \\ g_2 \\ g_3 \\ \dots$	×	× ×	× × ×	× × ×	××	×	···· ···

"Why not working directly on intervals¹¹ ... with pattern structures ¹²?"

- ¹⁰ A. Belfodil et al. "Mining Formal Concepts Using Implications Between Items". *ICFCA*. 2019.
- ¹¹ S. O. Kuznetsov. "Galois Connections in Data Analysis (...)". ICFCA. 2005.
- ¹² B. Ganter et al. "Pattern Structures and Their Projections". *ICCS*. 2001.
- ¹³ B. Ganter et al. Formal Concept Analysis. 1999.

Data & Pattern Formalization Interordinal scaling¹³


Transform and mine

• A scale to encode intervals of attribute values

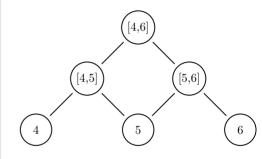
	$m_1 \leq 4$	$m_1 \leq 5$	$m_1 \leq 6$	$m_1 \ge 4$	$m_1 \ge 5$	$m_1 \ge 6$
4	×	×	×	×		
5		×	×	×	×	
6			×	×	×	×

- Transformed data with scaling is inefficient to store, to work on and visualize
- A lot of redundancy (actually, implications of the scale can be used during extraction¹⁰)
- Closed concepts are meaningful, but there are some problems with minimal generators (detailed after)

"Why not working directly on intervals¹¹ ... with pattern structures ¹²?"

- ¹⁰ A. Belfodil et al. "Mining Formal Concepts Using Implications Between Items". *ICFCA*. 2019.
- ¹¹ S. O. Kuznetsov. "Galois Connections in Data Analysis (...)". *ICFCA*. 2005.
- ¹² B. Ganter et al. "Pattern Structures and Their Projections". *ICCS*. 2001.
- ¹³ B. Ganter et al. Formal Concept Analysis. 1999.

Data & Pattern Formalization Interordinal scaling¹³


Transform and mine

• A scale to encode intervals of attribute values

	$m_1 \leq 4$	$m_1 \leq 5$	$m_1 \leq 6$	$m_1 \ge 4$	$m_1 \ge 5$	$m_1 \ge 6$
4	×	×	×	×		
5		×	×	×		×

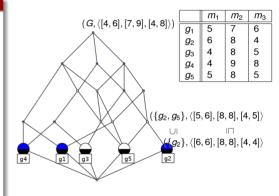
- Transformed data with scaling is inefficient to store, to work on and visualize
- A lot of redundancy (actually, implications of the scale can be used during extraction¹⁰)
- Closed concepts are meaningful, but there are some problems with minimal generators (detailed after)

"Why not working directly on intervals¹¹ ... with pattern structures ¹²?"

- ¹⁰ A. Belfodil et al. "Mining Formal Concepts Using Implications Between Items". *ICFCA*. 2019.
- ¹¹ S. O. Kuznetsov. "Galois Connections in Data Analysis (...)". *ICFCA*. 2005.
- ¹² B. Ganter et al. "Pattern Structures and Their Projections". *ICCS*. 2001.
- ¹³ B. Ganter et al. Formal Concept Analysis. 1999.

Data & Pattern Formalization Interval Pattern Structures¹⁶

Directly mine *n*-intervals


 $\bullet \; (G, (D, \sqcap), \delta)$

- For *n*-intervals, □ returns the convex-hull (other choices¹⁴,¹⁵, just need a meet-semi-lattice)
- if D is the powerset of a set, we fall back to FCA.
- A pair of closures $(.)^{\Box\Box}$ forming a Galois connection

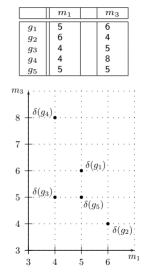
$$\{g_1, g_2\}^{\square} = \prod_{g \in \{g_1, g_2\}} \delta(g)$$

= $\langle 5, 7, 6 \rangle \sqcap \langle 6, 8, 4 \rangle$
= $\langle [5, 6], [7, 8], [4, 6] \rangle$
 $\langle [5, 6], [7, 8], [4, 6] \rangle^{\square} = \{g \in G | \langle [5, 6], [7, 8], [4, 6] \rangle \sqsubseteq \delta(g) \}$
= $\{g_1, g_2, g_5\}$

 $(\{g_1, g_2, g_5\}, \langle [5, 6], [7, 8], [4, 6] \rangle)$ is a (pattern) concept

Top-down: Hyper-rectangle inclusion

- ¹⁴ M. Kaytoue et al. "Embedding tolerance relations in FCA: an application in information fusion". CIKM. 2010.
- ¹⁵ 🚺 Z. Assaghir et al. "Managing Information Fusion with Formal Concept Analysis". MDAI. 2010.
- ¹⁶ M. Kaytoue et al. "Mining gene expression data with pattern structures in FCA". Inf. Sci. 181.10 (2011).

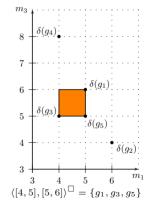

- $\langle [a,b], [c,d] \rangle$ with $a,b \in W_{m_1} = \{4,5,6\}$ and $c,d \in W_{m_2} = \{5,4,6,8\}$
- \bullet Total number of possible n-intervals

 $i \in$

$$\prod_{\{1,\dots,|M|\}} \frac{|W_{m_i}| \times (|W_{m_i}|+1)}{2}$$

- An equivalence class has
 - a unique closed pattern: the smallest rectangle
 - one or several generators: the largest rectangles
 - no bijection between interval minimal generators and minimal itemsets from interordinally scaled data, it holds only for closed patterns
- \bullet Closed interval patterns offer a concise representation (10^7 to 10^9 on Bilkent's), but are not considered in the SD algorithms
- Generators may be interesting for rule-based classifiers as they "cover more"

¹⁷ M. Kaytoue et al. "Revisiting Numerical Pattern Mining with Formal Concept Analysis". *IJCAI*. 2011.

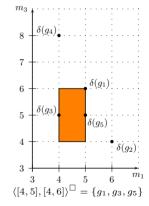

- $\langle [a,b], [c,d] \rangle$ with $a,b \in W_{m_1} = \{4,5,6\}$ and $c,d \in W_{m_2} = \{5,4,6,8\}$
- \bullet Total number of possible n-intervals

$$\prod_{i \in \{1,...,|M|\}} \frac{|W_{m_i}| \times (|W_{m_i}| + 1)}{2}$$

- An equivalence class has
 - a unique closed pattern: the smallest rectangle
 - one or several generators: the largest rectangles
 - no bijection between interval minimal generators and minimal itemsets from interordinally scaled data, it holds only for closed patterns
- \bullet Closed interval patterns offer a concise representation (10^7 to 10^9 on Bilkent's), but are not considered in the SD algorithms
- Generators may be interesting for rule-based classifiers as they "cover more"

		_	
	m_1		m_3
g_1	5		6
g_2	6		4
g_3	4		5
g_4	4		8
g_5	5		5

¹⁷ M. Kaytoue et al. "Revisiting Numerical Pattern Mining with Formal Concept Analysis". *IJCAI*. 2011.

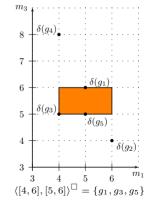

- $\langle [a,b], [c,d] \rangle$ with $a,b \in W_{m_1} = \{4,5,6\}$ and $c,d \in W_{m_2} = \{5,4,6,8\}$
- \bullet Total number of possible n-intervals

$$\prod_{i \in \{1,...,|M|\}} \frac{|W_{m_i}| \times (|W_{m_i}| + 1)}{2}$$

- An equivalence class has
 - a unique closed pattern: the smallest rectangle
 - one or several generators: the largest rectangles
 - no bijection between interval minimal generators and minimal itemsets from interordinally scaled data, it holds only for closed patterns
- \bullet Closed interval patterns offer a concise representation (10^7 to 10^9 on Bilkent's), but are not considered in the SD algorithms
- Generators may be interesting for rule-based classifiers as they "cover more"

		_	
	m_1		m_3
g_1	5		6
g_2	6		4
g_3	4		5
g_4	4		8
g_5	5		5

¹⁷ M. Kaytoue et al. "Revisiting Numerical Pattern Mining with Formal Concept Analysis". *IJCAI*. 2011.

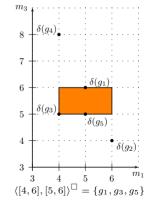

- $\langle [a,b], [c,d] \rangle$ with $a,b \in W_{m_1} = \{4,5,6\}$ and $c,d \in W_{m_2} = \{5,4,6,8\}$
- \bullet Total number of possible n-intervals

$$\prod_{i \in \{1,...,|M|\}} \frac{|W_{m_i}| \times (|W_{m_i}| + 1)}{2}$$

- An equivalence class has
 - a unique closed pattern: the smallest rectangle
 - one or several generators: the largest rectangles
 - no bijection between interval minimal generators and minimal itemsets from interordinally scaled data, it holds only for closed patterns
- \bullet Closed interval patterns offer a concise representation (10^7 to 10^9 on Bilkent's), but are not considered in the SD algorithms
- Generators may be interesting for rule-based classifiers as they "cover more"

		-	
	m_1		m_3
g_1	5		6
g_2	6		4
g_3	4		5
g_4	4		8
g_5	5		5

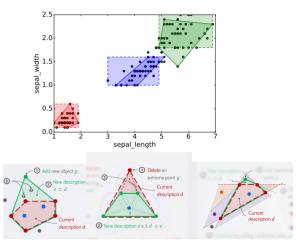
¹⁷ M. Kaytoue et al. "Revisiting Numerical Pattern Mining with Formal Concept Analysis". *IJCAI*. 2011.


- $\langle [a,b], [c,d] \rangle$ with $a,b \in W_{m_1} = \{4,5,6\}$ and $c,d \in W_{m_2} = \{5,4,6,8\}$
- \bullet Total number of possible n-intervals

$$\prod_{i \in \{1,...,|M|\}} \frac{|W_{m_i}| \times (|W_{m_i}| + 1)}{2}$$

- An equivalence class has
 - a unique closed pattern: the smallest rectangle
 - one or several generators: the largest rectangles
 - no bijection between interval minimal generators and minimal itemsets from interordinally scaled data, it holds only for closed patterns
- \bullet Closed interval patterns offer a concise representation (10^7 to 10^9 on Bilkent's), but are not considered in the SD algorithms
- Generators may be interesting for rule-based classifiers as they "cover more"

		-	
	m_1		m_3
g_1	5		6
g_2	6		4
g_3	4		5
g_4	4		8
g_5	5		5



¹⁷ M. Kaytoue et al. "Revisiting Numerical Pattern Mining with Formal Concept Analysis". *IJCAI*. 2011.

Data & Pattern Formalization Convex Polygon Patterns

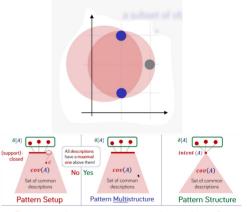
Towards more expressive numerical patterns¹⁸

- Interval patterns consider each attribute independently
- Convex polytope patterns combine numerical attributes with conjunctions of linear inequalities $12.m_1(g) + 3.m_2(g) \le 12 \land ...$
- Several algorithms to mine the structure $(G, (D, \Box), \delta)$ (as \Box comm., reflx. assoc.)
 - Basic bottom up CbO: computes closures & test canonicity: we can avoid this
 - Top-down enumeration on a Delaunay triangulation: incrementally computes convex hulls
 - Bottom-up "vision-based algorithm": only points seeing one side can be added

Only 2D! Integrate spatial attributes in a pattern structure

¹⁸ A. Belfodil et al. "Mining Convex Polygon Patterns with Formal Concept Analysis". *IJCAI*. 2017.

Data & Pattern Formalization Beyond Pattern Structures



Pattern structures model only meet-semi-lattices

- Several minimal enclosing disks of a set of points
- Intersection of graph/sequence patterns is not unique but pattern structures can be used¹⁹!)
- What are the necessary conditions to apply this trick, what is the trick exactly?

First step towards understanding^{20, 21}

- Pattern setups: D is just a poset
- Pattern-multi-structures: *D* is a multi-semi-lattice, can be turned to a pattern structure (anti-chain completion)

Can we design generic algorithms?

- ¹⁹ S. O. Kuznetsov. "Learning of Simple Conceptual Graphs from Positive and Negative Examples". *PKDD*. 1999.
- ²⁰ Aimene Belfodil. "An Order Theoretic Point-of-view on Subgroup Discovery.". PhD thesis. 2019.
- ²¹ A. Belfodil et al. "On Pattern Setups and Pattern Multistructures". Int. J. General Systems (revision) (2019).

Data & Pattern Formalization **Biclusters**

Biclusters just look like concepts!

- Recommender systems, gene expression data, NN compression and mining
- a local phenomena in the data: "rectangles of values", differ with clustering
- connectedness: equality, similarity...
- overlapping of rectangles
- a partial order of biclusters
- maximality of rectangles

Many definitions, ad hoc/heuristic search²²

- Iterative Row/Column Clustering Combination
- Divide and Conquer
- Greedy Iterative Search vs. Exhaustive Enumeration

	m_1	m_2	m_3	m_4	m_5
g_1	1	2	2	1	6
g_2	2	1	1	0	6
g_3	2	2	1	7	6
g_4	8	9	2	6	7
- 1					

1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.0	1.0	2.0	3.0	4.0
1.0	1.0	1.0	1.0	2.0	2.0	2.0	2.0	1.0	2.0	3.0	4.0
1.0	1.0	1.0	1.0	3.0	3.0	3.0	3.0	1.0	2.0	3.0	4.0
1.0	1.0	1.0	1.0	4.0	4.0	40	40	1.0	2.0	3.0	4.0

]	1.0	2.0	0.5	1.5
]	2.0	4.0	1.0	3.0
]	4.0	8.0	2.0	6.0
1	3.0	6.0	1.5	4.5

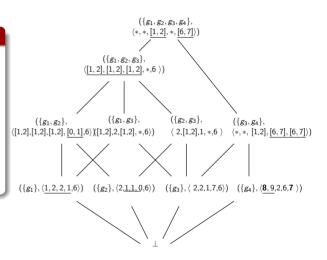
²² S.C. Madeira et al. "Biclustering algorithms for biological data analysis: a survey". *IEEE/ACM Transactions on Computational Biology and Bioinformatics* 1.1 (2004).

Data & Pattern Formalization Some bridges between FCA and biclustering (1/4)

Scaling may be enough! ²³	Class of tolerance			Bicluster corresponding to first concept on left list				
• A bicluster (A, B) of similar values is s.t. $m_i(g_j) \simeq_{\theta} m_k(g_l), \forall g_j, g_l \in$ $A, \forall m_i, m_k \in B$ and maximal if no object/attribute can be added	[0,1]	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$(\{g_1,g_2\},\{m_4\})\\(\{g_2\},\{m_2,m_3,m_4\})$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				
• \simeq_{θ} is a tolerance relation: reflexive, symmetric, but not transitive, from which classes of tolerance are defined as maximal (convex) sets of pairwise similar	[1, 2]	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{l} (\{g_1,g_2,g_3\},\{m_1,m_2,m_3\}) \\ (\{g_1\},\{m_1,m_2,m_3,m_4\}) \\ (\{g_1,g_2,g_3,g_4\},\{m_3\}) \end{array} $	$\begin{tabular}{ c c c c c c c } \hline & m_1 & m_2 & m_3 & m_4 & m_5 \\ \hline \hline g_1 & 1 & 2 & 2 & 1 & 6 \\ g_2 & 2 & 1 & 1 & 0 & 6 \\ g_3 & 2 & 2 & 1 & 7 & 6 \\ g_4 & 8 & 9 & 2 & 6 & 7 \\ \hline \end{tabular}$				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	[6,7]	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$(\{g_3,g_4\},\{m_4,m_5\})\\(\{g_1,g_2,g_3,g_4\},\{m_5\})$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Exist	ing algorithms, n	atural distributed	computing,				

²³ M. Kaytoue et al. "Biclustering Numerical Data in Formal Concept Analysis". *ICFCA*. vol. 6628. LNCS. 2011.

Data & Pattern Formalization Some bridges between FCA and biclustering (2/4)


Interval Pattern Structures²⁴

• Consider the tolerance relation when (i) computing intersections

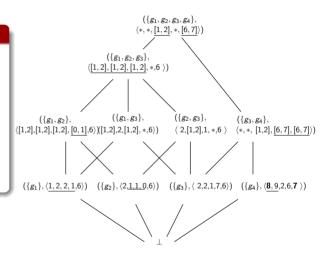
$$[a_1, b_1] \sqcap [a_2, b_2] = \begin{cases} [min(a_1, a_2), max(b_1, b_2)] \\ \text{if } \leq \theta \\ *, \text{otherwise} \end{cases}$$

- (ii) checking subsumption $* \sqsubseteq [a, b]$
- Check maximality during the exploration

	m_1	m_2	m_3	m_4	m_5
g_1	1	2	2	1	6
g_2	2	1	1	0	6
g_3	2	2	1	7	6
g_2 g_3 g_4	8	9	2	6	7

²⁴ 🚺 M. Kaytoue et al. "Biclustering Numerical Data in Formal Concept Analysis". *ICFCA*. vol. 6628. LNCS. 2011.

Data & Pattern Formalization Some bridges between FCA and biclustering (2/4)


Interval Pattern Structures²⁴

• Consider the tolerance relation when (i) computing intersections

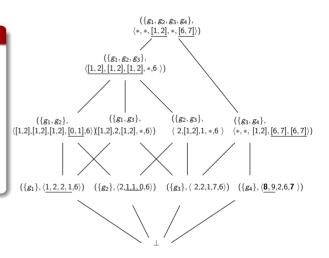
$$[a_1, b_1] \sqcap [a_2, b_2] = \begin{cases} [min(a_1, a_2), max(b_1, b_2)] \\ \text{if } \leq \theta \\ *, \text{otherwise} \end{cases}$$

- (ii) checking subsumption $* \sqsubseteq [a, b]$
- Check maximality during the exploration

	m_1	m_2	m_3	m_4	m_5
g_1	1	2	2	1	6
g_2	2	1	1	0	6
g_3	2	2	1	7	6
g_4	8	9	2	6	7

²⁴ 🗐 M. Kaytoue et al. "Biclustering Numerical Data in Formal Concept Analysis". *ICFCA*. vol. 6628. LNCS. 2011.

Data & Pattern Formalization Some bridges between FCA and biclustering (2/4)


Interval Pattern Structures²⁴

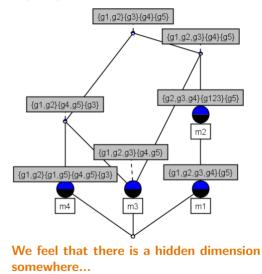
• Consider the tolerance relation when (i) computing intersections

$$[a_1, b_1] \sqcap [a_2, b_2] = \begin{cases} [min(a_1, a_2), max(b_1, b_2)] \\ \text{if } \leq \theta \\ *, \text{otherwise} \end{cases}$$

- (ii) checking subsumption $* \sqsubseteq [a, b]$
- Check maximality during the exploration

	m_1	m_2	m_3	m_4	m_5
g_1	1	2	2	1	6
g_2	2	1	1	0	6
g_3	2	2	1	7	6
g_2 g_3 g_4	8	9	2	6	7

²⁴ 🚺 M. Kaytoue et al. "Biclustering Numerical Data in Formal Concept Analysis". ICFCA. vol. 6628. LNCS. 2011.


Data & Pattern Formalization Some bridges between FCA and biclustering (3/4)

Partition Pattern Structures²⁵

 $\delta($

- (M, (P(G, θ), ⊓), δ): Each attribute is partitioned with hard/soft partitions (depending if θ is nonzero)
- \sqcap and \sqsubseteq are classic partition intersection and ordering

²⁵ M. Kaytoue et al. "FCA Methods for Mining Biclusters of Similar Values on Columns". CLA. 2014.

Data & Pattern Formalization Some bridges between FCA and biclustering (4/4)

An additional dimension?²⁶

- Triadic/Polvadic Concept Analysis²⁷
- Efficient implementations to mine polyadic concepts²⁸
- A bijection between the collection of biclusters (A,B) and the collection of triadic concepts (A, B, C) for some θ
- Generalizes to *n*-dimensional datasets. i.e. "n-clusters"

		t_1	= [0	l, 0]			t_2	= [0]	, 1]			t_3	= [0	[, 2]			t_4	= [0	, 6]			t_5	= [0]	, 7]	
	m_1	m_2	m_3	m_4	m_5	m_1	m_2	m_3	m_4	m_5	m_1	m_2	m_3	m_4	m_5	m_1	m_2	m_3	m_4	m_5	m_1	m_2	m_3	m_4	m_5
g_1						×			×		×	×	×	×		×	×	×	×	×	×	×	×	×	×
g_2				×			×	×	×		×	×	×	×		×	×	×	×	×	×	×	×	×	×
g_3								×			×	×	×			×	×	×		×	×	×	×	×	×
g_4													×					×	×				×	×	×
_																									
		t_6	= [0	, 8]			t_7	= [0]	, 9]			t_8	= [1	., 9]			t_9	= [2	, 9]			t_{10}	= [(5, 9]	
	m_1	m_2	m_3	m_4	m_5	m_1	m_2	m_3	m_4	m_5	m_1	m_2	m_3	m_4	m_5	m_1	m_2	m_3	m_4	m_5	m_1	m_2	m_3	m_4	m_5
g_1	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×		×	×		×					×
g_2	×	×	×	×	×	×	×	×	×	×	×	×	×		×	×				×					×
g_3	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×				×	×
g_4	×		×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×		×	×
_																									
		t_{11}	= [7	7, 9]			t_{12}	= [8	8, 9]			t_{13}	= [9, 9]]									
_	m_1	m_2	m_3	m_4	m_5	m_1	m_2	m_3	m_4	m_5	m_1	m_2	m_3	m_4	m_5]									
g_1																									
g_2																									
g_3				×																					
g_4	×	×			×	×	×					×													

We are still puzzled here on how to avoid the data scaling and work directly on what could be called a multi-dimensional pattern structure

26 📓 M. Kaytoue et al. "Biclustering meets triadic concept analysis". Ann. Math. Artif. Intell. 70.1-2 (2014).

27 F. Lehmann et al. "A Triadic Approach to Formal Concept Analysis". ICCS. 1995.

28 L. Cerf et al. "Closed patterns meet *n*-ary relations". *TKDD* 3.1 (2009).

Data & Pattern Formalization Data Dependencies

Functional dependencies (FD)...

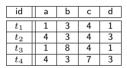
- Let T be a set of tuples, and $X, Y \subseteq \mathcal{U}$, a FD $X \to Y$ holds if: $\forall t, t' \in T : t(X) = t'(X) \implies t(Y) = t'(Y)$
- A minimal generating setcan restore all FD's of *T* with Amstrong rules (reflexivity, augmentation, transitivity)

... look like implications in FCA

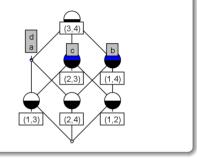
- Let (G, M, I) be a formal context, and $X, Y \subseteq M$, implication $X \to Y$ holds if $X' \subseteq Y'$: a objects from G having the attributes in X also have the attributes in Y
- Implications obey the Amstrong rules

	m_1	m_2	m_3	
g_1	×			
g_2	×	×		$m_3 \rightarrow m_2$
g_3		×	×	
g_4		×	×	
g_5	×	×	×	

Used in DB for query optimization, normalization, data cleaning, error detection, but again, a several algorithms²⁹ and more & more types/relaxations of the FD definitions³⁰


²⁹ T. Papenbrock et al. "FD Discovery: An Experimental Evaluation of Seven Algorithms". *PVLDB* 8.10 (2015).

³⁰ L. Caruccio et al. "Relaxed FD's - A Survey of Approaches". *IEEE Trans. Knowl. Data Eng.* 28.1 (2016).


Data & Pattern Formalization Bridges between FCA and data dependencies

A first connection was proposed quite some time ago³¹

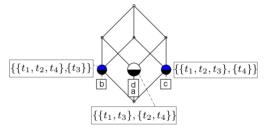
K	а	b	с	d
(t_1, t_2)		×	×	
(t_1, t_3)	×		Х	Х
(t_1, t_4)		X		
(t_2, t_3)			Х	
(t_2, t_4)	×	X		Х
(t_3, t_4)				

"Quadratic transformation"! But...

Objects of the formal context encodes agree sets, i.e., the equivalence relation of a partition for each attribute... that we can intersect (on which rely algorithms such as TANE)

³¹ B. Ganter et al. Formal Concept Analysis. 1999.

Data & Pattern Formalization Bridges between FCA and data dependencies



Partition pattern structures

• Describe attributes with partitions and intersect: Pattern implications are in 1-1-correspondence with FD's³²

id	a	b	с	d
	1 4			
t_1	1	3	4	1
t_2	Δ	3	Δ	3
62	1 7	5		5
t_3	1	8	4	1
v3	-	U U	•	-
t_4	4	3	7	3

m	$\delta(m) \in (D, \sqcap)$
а	$\{\{t_1, t_3\}, \{t_2, t_4\}\}$
b	$\{\{t_1, t_2, t_4\}, \{t_3\}\}$
С	$\{\{t_1, t_2, t_3\}, \{t_4\}\}$
d	$\{\{t_1, t_3\}, \{t_2, t_4\}\}$

- Relaxations are directly handled with "soft" partitions (tolerance) (same intersection/inclusion operations) !³³
- Order dependencies are a bit trickier, Triadic Concept Analysis helped ("3rd dimension not symmetric")³⁴

- ³³ J. Baixeries et al. "Characterizing approximate-matching dependencies in FCA". Discr. Appl. Math. 249 (2018).
- ³⁴ V. Codocedo et al. "Characterization of Order-like Dependencies with FCA". CLA. 2016.

³² J. Baixeries et al. "Characterizing FD's in FCA with pattern structures". Ann. Math. Artif. Intell. 72.1-2 (2014).

Pattern Mining and Subgroup Discovery Outline

• Data & Pattern Formalization

- Numerical Pattern Mining
- Biclustering
- Data Dependencies

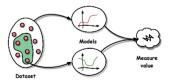
• Pattern Mining and Subgroup Discovery

- Mining a small set of diverse patterns
- Iteratively mine finer data representations

• Knowledge Discovery in Practice

- Neuroscience & Olfaction
- Social Network Analysis
- Video Game Analytics
- Perspectives

Pattern Mining and Subgroup Discovery A short Introduction to Subgroup Discovery


Find subgroups of objects that behave differently³⁵

- Most famous case: Weighted Relative Accuracy
 - $\bullet \ p = \langle MW \geq 142.22, nC \geq 11 \rangle$
 - $supp(p) = \{1, 60, 82\}$
 - $WRAcc(p, Musk) = \frac{3}{6} \times \left(\frac{2}{3} \frac{2}{6}\right) = 0.17$
- "Generalized" with Exceptional Model Mining³⁶

Discover a small set of diverse and high quality patterns? In presence of hundreds of possibly correlated labels?³⁷ Optimize directly the quality of the pattern set?³⁸

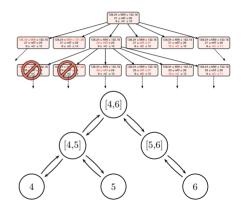
- ³⁶ W. Duivesteijn et al. "Exceptional Model Mining (...)". Data Min. Knowl. Discov. (2016).
- ³⁷ 📑 G. Bosc et al. "Local SD for Eliciting and Understanding New Structure-Odor Relationships". DS. 2016.
- ³⁸ 📄 A. Belfodil et al. "FSSD: A Fast and Efficient Algorithm for Subgroup Set Discovery". *IEEE DSAA*. 2019.

ID	MW	nAT	nC	Odor
1	150.19	21	11	\
24	128.24	29	11	i 👸 🍐
48	136.16	24	9	🤠 🁗
60	152.16	23	11	🔶 🐂
82	151.28	27	12	🔶 🐻 🎽
1633	142.22	27	10	🔶 🌔

³⁵ S. Wrobel. "An Algorithm for Multi-relational Discovery of Subgroups". *PKDD*. 1997.

Subgroups

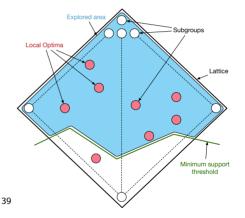
Lattice


Minimum support threshold

Finding (a few) (interesting) interval patterns Local Optima

Finding (a few) (interesting) interval patterns

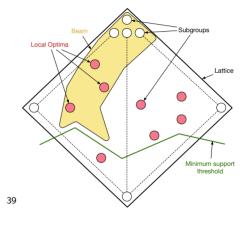
- **Diversity** & non-monotonicity imply to consider a large search space
- "Really exhaustive" search
 - Bottom-up: objects sets from empty set (CbO)³⁹
 - Top-down: "MinIntChange" as left/right shrinks⁴⁰
 - Impossible for (not so) large data



³⁹ M. Kaytoue et al. "Mining gene expression data with pattern structures in FCA". *Inf. Sci.* 181.10 (2011).
⁴⁰ M. Kaytoue et al. "Revisiting Numerical Pattern Mining with Formal Concept Analysis". *IJCAI*. 2011.

Finding (a few) (interesting) interval patterns

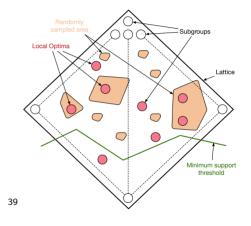
- **Diversity** & non-monotonicity imply to consider a large search space
- "Really exhaustive" search
 - Bottom-up: objects sets from empty set (CbO)
 - Top-down: "MinIntChange" as left/right shrinks
 - Impossible for (not so) large data
- "Not really exhaustive" search: discretization is applied before/during the search, impossible on large data, no information loss estimation, no idea if better discr. exist



³⁹ M. Atzmüller et al. "SD-Map - A Fast Algorithm for Exhaustive Subgroup Discovery". *PKDD*. 2006.

Finding (a few) (interesting) interval patterns

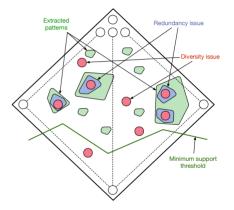
- **Diversity** & non-monotonicity imply to consider a large search space
- "Really exhaustive" search
 - Bottom-up: objects sets from empty set (CbO)
 - Top-down: "MinIntChange" as left/right shrinks
 - Impossible for (not so) large data
- "Not really exhaustive" search: discretization is applied before/during the search, impossible on large data, no information loss estimation, no idea if better discr. exist
- **Beam-search**: a set of parallel directed hill climbings greedy algorithm, may get stuck in a few local optima, increasing the beam is difficult



³⁹ M. van Leeuwen et al. "Diverse subgroup set discovery". Data Min. Knowl. Discov. 25.2 (2012).

Finding (a few) (interesting) interval patterns

- **Diversity** & non-monotonicity imply to consider a large search space
- "Really exhaustive" search
 - Bottom-up: objects sets from empty set (CbO)
 - Top-down: "MinIntChange" as left/right shrinks
 - Impossible for (not so) large data
- "Not really exhaustive" search: discretization is applied before/during the search, impossible on large data, no information loss estimation, no idea if better discr. exist
- **Beam-search**: a set of parallel directed hill climbings greedy algorithm, may get stuck in a few local optima, increasing the beam is difficult
- **Sampling**: may be concerned with the long tail problem: a few patterns are interesting, many are not


¹⁹ 🗾 M. Boley et al. "Direct local pattern sampling by efficient two-step random procedures". KDD. 2011.

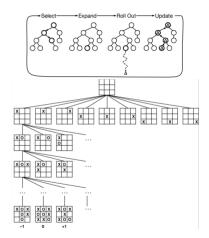
Pattern Mining and Subgroup Discovery Algorithm for (numerical) subgroup discovery

Finding (a few) (interesting) interval patterns

- Diversity & non-monotonicity imply to consider a large search space
- "Really exhaustive" search
 - Bottom-up: objects sets from empty set (CbO)
 - Top-down: "MinIntChange" as left/right shrinks
 - Impossible for (not so) large data
- "Not really exhaustive" search: discretization is applied before/during the search, impossible on large data, no information loss estimation, no idea if better discr. exist
- **Beam-search**: a set of parallel directed hill climbings greedy algorithm, may get stuck in a few local optima, increasing the beam is difficult
- **Sampling**: may be concerned with the long tail problem: a few patterns are interesting, many are not

A trade-off needs to be found between exploration and exploitation Produce a small diverse set of patterns and avoid redundancy

Pattern Mining and Subgroup Discovery Monte Carlo Tree Search

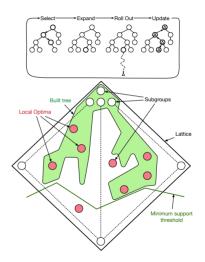


Sampling large trees/lattices of game states

 MCTS^{39} is an exploration method that builds iteratively the search tree according to random simulations.

- It aims at finding the best arm of a multi-armed bandit by sampling the search below each arm
- It explores the search space with random simulations to get rewards
- The more iterations, the best approximation of expected reward of each arm
- The trade-off between exploration and exploitation: Always go to the same restaurant vs. Try a new one!

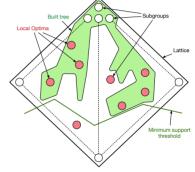
$$UCT(s, s') = \frac{Q(s')}{N(s')} + 2\sqrt{\frac{\ln(N(s))}{N(s')}}$$


³⁹ C. Browne et al. "A Survey of MCTS Methods". IEEE Trans. Comput. Intellig. and AI in Games (2012).

Pattern Mining and Subgroup Discovery Diverse pattern set discovery with MCTS

MTCS4DM⁴⁰

- Use the specialization operations to get direct lower neighbors in the lattice
- Building iteratively the search tree thanks to a fixed number of random simulations based on the exploration/exploitation trade-off
- Leads to exhaustive search if enough memory
- Ensure diversity *per se*: Extracting the top-k diverse and non redundant subgroups
- No knowledge on the measure is required
- A result is always available and improves over time
- An expert can express his preferences, used to drive the search (bias the simulations)

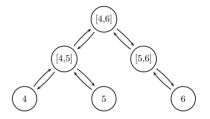

⁴⁰ G. Bosc et al. "Anytime discovery of a diverse set of patterns with MCTS". Data Min. Knowl. Discov. (2018).

Pattern Mining and Subgroup Discovery Diverse pattern set discovery with MCTS

MTCS4DM⁴⁰

- Use the specialization operations to get direct lower neighbors in the lattice
- Building iteratively the search tree thanks to a fixed number of random simulations based on the exploration/exploitation trade-off
- Leads to exhaustive search if enough memory
- Ensure diversity *per se*: Extracting the top-k diverse and non redundant subgroups
- No knowledge on the measure is required
- A result is always available and improves over time
- An expert can express his preferences, used to drive the search (bias the simulations)

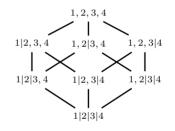
but... Select/Expand/RollOut/Update are tricky to define, and are -to some extentpattern language dependent⁴¹


⁰ <u> </u>G. Bosc et al. "Anytime discovery of a diverse set of patterns with MCTS". Data Min. Knowl. Discov. (2018).

¹ 📄 R. Mathonat et al. "A Bandit Model to Discover Interesting Subgroups in Labeled Sequences". *IEEE DSAA*. 2019.

Minimal interval changes are too... minimal

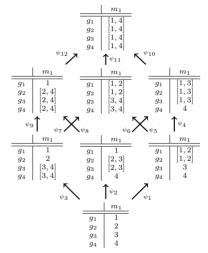
- Direct specializations: minimal left/right shrinks
- Implies to search "interesting patterns very deeply"
- Can we cut anywhere in the attribute domain?


M. Kaytoue et al. "Revisiting Numerical Pattern Mining with Formal Concept Analysis". IJCAI. 2011.

Minimal interval changes are too... minimal

- Direct specializations: minimal left/right shrinks
- Implies to search "interesting patterns very deeply"
- Can we cut anywhere in the attribute domain?
- Consider all possible discretizations, a finite lattice!
 - Top: roughest discretization holds (very rough) approximations of patterns of exhaustive search
 - Specializations: adding new cut points
 - Bottom: finest discretization holds pattern of exhaustive search!

With $domain(m_1) = \{1, 2, 3, 4\}$



Minimal interval changes are too... minimal

- Direct specializations: minimal left/right shrinks
- Implies to search "interesting patterns very deeply"
- Can we cut anywhere in the attribute domain?
- Consider all possible discretizations, a finite lattice!
 - Top: roughest discretization holds (very rough) approximations of patterns of exhaustive search
 - Specializations: adding new cut points
 - Bottom: finest discretization holds pattern of exhaustive search!

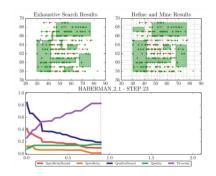
Most pattern mining algorithms consider one or several nodes of this lattice, order-isomorphic to the powerset lattice.

The lattice of all interval pattern structure projections $((G, (D, \sqcap_{interval}), \psi_{i \in [1;16]} \circ \delta), \sqcap_{partition})$

Algorithm: A first proposition

- No need to start from the top! Simply build an arbitrary discretization (equi-width -depth)
- (Partially) explore the chain until the bottom (if given enough budget!)
- At each step, performs a interval pattern mining, provides distance to the exploration end, guarantees if the best possible subgroup has been encountered already
- Could use a closed itemset mining algorithm (called the "nominal" property in Cortana/SD)

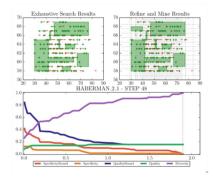
Most pattern mining algorithms consider one or several nodes of this lattice, order-isomorphic to the powerset lattice.


A. Belfodil et al. "Anytime Subgroup Discovery in Numerical Domains with Guarantees". *ECML/PKDD* (best student paper in data mining award). 2018.

Algorithm: A first proposition

- No need to start from the top! Simply build an arbitrary discretization (equi-width -depth)
- (Partially) explore the chain until the bottom (if given enough budget!)
- At each step, performs a interval pattern mining, provides distance to the exploration end, guarantees if the best possible subgroup has been encountered already
- Could use a closed itemset mining algorithm (called the "nominal" property in Cortana/SD)

Most pattern mining algorithms consider one or several nodes of this lattice, order-isomorphic to the powerset lattice.


A. Belfodil et al. "Anytime Subgroup Discovery in Numerical Domains with Guarantees". *ECML/PKDD* (best student paper in data mining award). 2018.

Algorithm: A first proposition

- No need to start from the top! Simply build an arbitrary discretization (equi-width -depth)
- (Partially) explore the chain until the bottom (if given enough budget!)
- At each step, performs a interval pattern mining, provides distance to the exploration end, guarantees if the best possible subgroup has been encountered already
- Could use a closed itemset mining algorithm (called the "nominal" property in Cortana/SD)

Most pattern mining algorithms consider one or several nodes of this lattice, order-isomorphic to the powerset lattice.

A. Belfodil et al. "Anytime Subgroup Discovery in Numerical Domains with Guarantees". *ECML/PKDD* (best student paper in data mining award). 2018.

Knowledge Discovery in Practice **Outline**

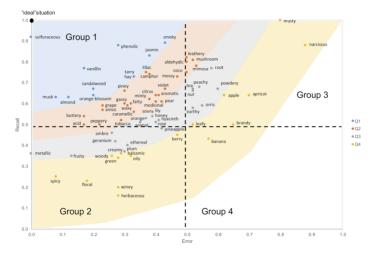
• Data & Pattern Formalization

- Numerical Pattern Mining
- Biclustering
- Data Dependencies

• Pattern Mining and Subgroup Discovery

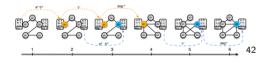
- Mining a small set of diverse patterns
- Iteratively mine finer data representations

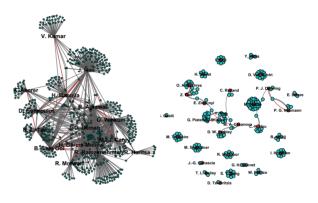
• Knowledge Discovery in Practice


- Neuroscience & Olfaction
- Social Network Analysis
- Video Game Analytics

• Perspectives

Knowledge Discovery in Practice Olfaction in Neuroscience


C. C. Licon et al. "Chemical features mining provides new descriptive structure-odor relationships". *PLOS Computational Biology* 15.4 (Apr. 2019).


Knowledge Discovery in Practice Social Network Analysis

European project with TCD & Tapastreet

- 3 years project, 8 months in the company
- Theoretical contributions in DM2L
- Applied & Engineering contributions
- Impact on teaching (internships & class)

$$\begin{aligned} \{closeness_1^-\}, \{IEEETkde^+\}, \{numCliques_1^+\} \rightarrow \{numCliques_1^-\} \\ \{eigenvector_1^{++}\}, \{Journal^{++}, betweenness_3^{++}\} \rightarrow \{betweenness_4^{++}\} \end{aligned}$$

⁴² M. Kaytoue et al. "What effects topological changes in dynamic graphs? - Elucidating relationships between vertex attributes and the graph structure". *Social Netw. Analys. Mining* 5.1 (2015).

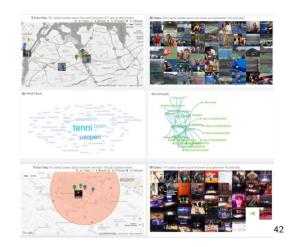
Knowledge Discovery in Practice Social Network Analysis

European project with TCD & Tapastreet

- 3 years project, 8 months in the company
- Theoretical contributions in DM2L
- Applied & Engineering contributions
- Impact on teaching (internships & class)

Nodes and edges are provided with a $${\rm context}^{42}$$

⁴² M. Kaytoue et al. "Exceptional contextual subgraph mining". *Machine Learning* 106.8 (2017).


Knowledge Discovery in Practice Social Network Analysis

European project with TCD & Tapastreet

- 3 years project, 8 months in the company
- Theoretical contributions in DM2L
- Applied & Engineering contributions
- Impact on teaching (internships & class)

⁴² P. Houdyer et al. "Gazouille: Detecting and Illustrating Events from Social Media". *Demo@ECML/PKDD*. 2015.

Knowledge Discovery in Practice Social Network Analysis

European project with TCD & Tapastreet

- 3 years project, 8 months in the company
- Theoretical contributions in DM2L
- Applied & Engineering contributions
- Impact on teaching (internships & class)

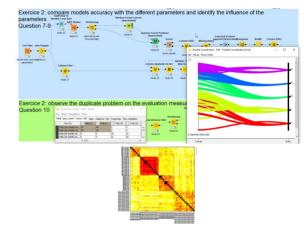
and a		REAR F B	an FEI (18)	(1) (E)		S tags	Dts		S tite	I Winner Cluste	1
0 1.38	o-slint-		NOT REPORT OF	Passes		lyon,psg,footfé	minin 63,571,53	32,	Lyon - PSG	173	22
	Paul		and Annual and a state	a du cell		lyon,psg,footfé	minin 63,571,53	99,	Lyon - PSG	173	55
1-21	10.0010	See State	Rue Genta	18 -		lyon,psg,footfé	minin 63,571,53	99,	Lyon - PSG	173	55
34		1 1 1 1		2		lyon,psg,footfé	minin 63,571,53	38,	Lyon - PSG	173	-41
	A. The	1	and and the second second	Pont		lyon,psg,footfé	minin 63,571,53	31,	Lyon - PSG	173	-44
yon					lyon,psg,footfé			Lyon - PSG		41	
12	H 1 1		Cordeliers			lyon,psg,footfé	minin 63,571,53	90,	Lyon - PSG	173	33
		1 1 E 2	新 1 新 1 1 1 1	CH E		france, fr, 14juil	t,feux 63,564,99	4,	Feux d'artifi	172	55
7	Pas	serel In A	IN A VALUE AND	COMP E		france, fr, 14julle	t, feux 63,564,99	4,	Feux d'arth	172	55
1 🛯	t a de	Rink (1995)	M ENERGY /	(明 3)		france.fr, 14juili	t,feux 63,564,99	4,	Feux d'artif	172	55
Æ.		1000 M	and services of the services o	1		france, fr, 14juile	t, feux 63,564,99	×4,	Feux d'arth	172	55
25	2011	1 have been	ALC: NO.			france.fr, 14juille	t, feux 63,564,99	4,	Feux d'artif	172	22 55 55 4 4 4 4 4 33 55 55 55 55 55 55 55 55 55 55 55 55
	and the state of the			Rontwie			t, feux 63,564,99				55
2n	3/ 1 -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	TOUC . INTER	a man file of		1	france.fr, 14juili	t, feux 63,564,99	4,	Feux d'artif	172	55
édr						france.fr. 14juile	t.feux 63,564,99	×4,	Feux d'artif	172	55
it-Je	Row ID	D Support	D Confide	Duft	S Conseq	S implies	() Items	14,	Feux d'arth	172	55
	rule0	0.005	0.8	156.86	weig	<	[73]	14,	Feux d'artifi	172	55
	rule 1	0.005	1	156.86	73	¢	[weig]	0,		171	11
	rule2	0.005	1	160.061	animal	<	[rhon,5]	9,		171	38
2	rule3	0.005	0.87	64.952	rhon	<	[5,animal]	9,		171	66
2	rule4	0.005	1	170.5	5	(m)	[rhon_anima]]	9,		171	55
	rule5	0.005	1	16.442	1	<	[artbrut]	_			and and
	rule6	0.005	1	16.442	1	<	[chaos]	-			
	rule7	0.006	0.8	13.154	1	<	[mont]	-			
	rule8	0.006	1	160.061	animal	6	[5.étang]	-			
	rule9	0.006	0.957	170.5	étang	<	[5.animal]	-			
	rule 10	0.006	1	170.5	S	<	[étang,animal]	-			
	rule11	0.006	1	160.061	animal	<	[5]	-			
	rule12	0.006	0.939	160.061	5	<	[anima]]	-			
	rule13	0.006	1	46.685	2	<	[charlemagn, Inc]	-			
	rule 14	0.006	1	113.667	feu	6	[artific.51]				
	rule 15	0.006	1	128.574	artific	<	[feu.51]	-			
	rule 16	0.006	0.803	96.925	51	<	[artific.feu]				
	rule17	0.006	1	160.061	octogôn	<	[gam.convent.32]	ī			

Knowledge Discovery in Practice Video Game Analytics

A growing field, with freely available data!

- Lack of data in industrial projects
- Rise of Video Game Live Streaming⁴² (1-month stay at MIT Media Lab)
- Applications with minor contributions to pattern mining
 - Strategic Sequential Patterns⁴³
 - Player keystroke dynamics⁴⁴
 - Learning to play⁴⁵
- Realistic data generation
- Impact on teaching and industry

⁴² M. Kaytoue et al. "Watch me playing, i am a professional (...)". MSND@WWW. 2012 – 210 citations!.


- ⁴³ G. Bosc et al. "Pattern Mining (...) to Study Strategy Balance in RTS Games". *IEEE Trans. on Games* (2017).
- ⁴⁴ O. Cavadenti et al. "(...)Clustering confusion matrices to identify cyberathletes aliases". DSAA. 2015.
- ⁴⁵ 📄 O. Cavadenti et al. "What is Wrong in My MOBA? Patterns Discriminating Deviant Behaviours". DSAA. 2016.

Knowledge Discovery in Practice Video Game Analytics

A growing field, with freely available data!

- Lack of data in industrial projects
- Rise of Video Game Live Streaming⁴² (1-month stay at MIT Media Lab)
- Applications with minor contributions to pattern mining
 - Strategic Sequential Patterns⁴³
 - Player keystroke dynamics⁴⁴
 - Learning to play⁴⁵
- Realistic data generation
- Impact on teaching and industry

- ⁴² M. Kaytoue et al. "Watch me playing, i am a professional (...)". *MSND@WWW*. 2012 210 citations!.
- ⁴³ G. Bosc et al. "Pattern Mining (...) to Study Strategy Balance in RTS Games". *IEEE Trans. on Games* (2017).
- ⁴⁴ <u> </u>0. Cavadenti et al. "(...)Clustering confusion matrices to identify cyberathletes aliases". DSAA. 2015.
- ⁴⁵ <u> </u>0. Cavadenti et al. "What is Wrong in My MOBA? Patterns Discriminating Deviant Behaviours". DSAA. 2016.

Perspectives Outline

• Data & Pattern Formalization

- Numerical Pattern Mining
- Biclustering
- Data Dependencies

• Pattern Mining and Subgroup Discovery

- Mining a small set of diverse patterns
- Iteratively mine finer data representations

• Knowledge Discovery in Practice

- Neuroscience & Olfaction
- Social Network Analysis
- Video Game Analytics

Perspectives

Perspectives Overview

Format Concept Analysis: a mean for cross-domain fertilization

- Numerical patterns: we can consider elegantly all closed n-intervals, better understanding of some patterns
- Biclusters: several types of biclusters are concepts (of a pattern structures or a (triadic) context)
- Data dependencies: Implications of a pattern structures & between formal contexts can model many types

Pattern Mining Algorithms

- Handling pattern set diversity with UCB & Monte Carlo Tree Search ("with a guarantee")
- Refine & mine: Perform exhaustive search on finer and finer data representation (with guarantees)

Research community

- FCA: Editorial board member of the int. conf. on FCA (since 2014⁴⁶), PC member of its sister CLA
- AI: PC for many AI conferences (IJCAI/ECAI), reviewer for AI, Annals of Math. and AI, Discr. Appl. Math.
- DM: PC for ECML/PKDD, KDD, ICDM, reviewer for Machine Learning, Data Ming. Knowl. Discov. journals

⁴⁶ C.-V. Glodeanu, M. Kaytoue and C. Sacarea. "Formal Concept Analysis - 12th International Conference, ICFCA 2014, Cluj-Napoca, Romania, June 10-13, 2014. Proceedings". Vol. 8478. LNCS. 2014.

Perspectives What's coming next

Data & Pattern Formalization

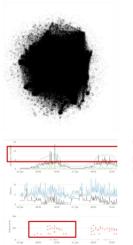
- Patterns: intervals for classification, polygons, circles, ... Links between TCA and pattern structures
- FDs: A systematic approach given the relation properties; pseudo-closed-sets & Algorithms

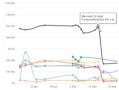
Subgroup Discovery and Algorithms

- Monte Carlo Tree Search, Refine&mine, sequence mining...: From rough to finer data representations
- Take in to account data complexity in the exploration exploitation trade-off. Formally, one simply "project" a pattern structure (multi? setup?)
- Constrained pattern mining, pattern quality measure cannot tell everything: Take into account user-feedback during the search⁴⁷, reuse his choices, learn the quality measure

Towards a systematic actionnability, through knowledge discovery in practice... ... which face inevitably research challenges (it depends until where one wishes to go)

⁴⁷ G. Bosc et al. "h(odor): Interactive Discovery of Hypotheses on the Structure-Odor Relationship in Neuroscience". *Demo@ECML/PKDD*. 2016.


Perspectives Knowledge Discovery in Practice at Infologic



A fantastic growth urges to process digitization

- For long purely client business oriented
- Now in desperate need of formalizing, understand, optimize its activities (development, integration, marketing & sellers, direction, teaching, ...)
- Collect/Consolidate data from many sources (source code, client database, usage data, sells, catalogs)
 - Static Code and Software Analytics
 - Predictive Maintenance
 - Knowledge Spaces, Graphs
 - Behavioral Data Analytics
 - Natural Language processing
 - Business rules reasoning

- Olivier Cavadenti. "Contribution de la découverte de motifs à l'analyse de collections de traces unitaires.". PhD thesis. 2016.
- Guillaume Bosc. "Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search". PhD thesis. 2017.
- Aimene Belfodil. "An Order Theoretic Point-of-view on Subgroup Discovery.". PhD thesis. 2019.
- Victor Codocedo, Post-doctoral researcher (2015–2016)
- Pierre Houdyer, Research Engineer (2015–2016)
- Romain Mathonat. "Sampling patterns in sequential data. Application to Rocket League®", 2020.

Thank you for your attention!